Survey on Probabilistic Models of Low-Rank Matrix Factorizations

نویسندگان

  • Jiarong Shi
  • Xiuyun Zheng
  • Wei Yang
چکیده

Low-rank matrix factorizations such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF) are a large class of methods for pursuing the low-rank approximation of a given data matrix. The conventional factorization models are based on the assumption that the data matrices are contaminated stochastically by some type of noise. Thus the point estimations of low-rank components can be obtained by Maximum Likelihood (ML) estimation or Maximum a posteriori (MAP). In the past decade, a variety of probabilistic models of low-rank matrix factorizations have emerged. The most significant difference between low-rank matrix factorizations and their corresponding probabilistic models is that the latter treat the low-rank components as random variables. This paper makes a survey of the probabilistic models of low-rank matrix factorizations. Firstly, we review some probability distributions commonly-used in probabilistic models of low-rank matrix factorizations and introduce the conjugate priors of some probability distributions to simplify the Bayesian inference. Then we provide two main inference methods for probabilistic low-rank matrix factorizations, i.e., Gibbs sampling and variational Bayesian inference. Next, we classify roughly the important probabilistic models of low-rank matrix factorizations into several categories and review them respectively. The categories are performed via different matrix factorizations formulations, which mainly include PCA, matrix factorizations, robust PCA, NMF and tensor factorizations. Finally, we discuss the research issues needed to be studied in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of VB Factorizations for Sparse and Low-Rank Estimation

Variational Bayesian (VB) factorial approximations anchor a wide variety of probabilistic models, where tractable posterior inference is almost never possible. This basic strategy is particularly attractive when estimating structured lowdimensional models of high-dimensional data, exemplified by the search for minimal rank and/or sparse approximations to observed data. To this end, VB models ar...

متن کامل

RSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures

RSVDPACK is a library of functions for computing low rank approximations of matrices. The library includes functions for computing standard (partial) factorizations such as the Singular Value Decomposition (SVD), and also so called “structure preserving” factorizations such as the Interpolative Decomposition (ID) and the CUR decomposition. The ID and CUR factorizations pick subsets of the rows/...

متن کامل

Algorithms for Approximate Subtropical Matrix Factorization

Matrix factorization methods are important tools in data mining and analysis. They can be used for many tasks, ranging from dimensionality reduction to visualization. In this paper we concentrate on the use of matrix factorizations for finding patterns from the data. Rather than using the standard algebra – and the summation of the rank-1 components to build the approximation of the original ma...

متن کامل

Rapid factorization of structured matrices via randomized sampling

Randomized sampling has recently been demonstrated to be an efficient technique for computing approximate low-rank factorizations of matrices for which fast methods for computing matrix vector products are available. This paper describes an extension of such techniques to a wider class of matrices that are not themselves rankdeficient, but have off-diagonal blocks that are. Such matrices arise ...

متن کامل

Optimality, Computation, and Interpretation of Nonnegative Matrix Factorizations

The notion of low rank approximations arises from many important applications. When the low rank data are further required to comprise nonnegative values only, the approach by nonnegative matrix factorization is particularly appealing. This paper intends to bring about three points. First, the theoretical Kuhn-Tucker optimality condition is described in explicit form. Secondly, a number of nume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017